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Moscow, USSR 
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In memory of the victims of the terrible earthquake in Armenia, December 1988. 

Abstract. I t  is shown that, unlike the model based only on the potential singularity 
U ( x )  = -lxl-’, the group of hidden symmetry explains not only the double degeneration 
of the energy spectrum but also the explicit form of the spectrum, wavefunctions and an 
extra constant of motion analogous to the Runge-Lenz vector. 

1. Introduction 

According to quantum mechanics, the discrete spectrum of one-dimensional systems 
is to be non-degenerate (Landau and Lifshitz 1974). Nevertheless there are some 
exceptions to the rule. This concerns the potentials: ( a )  symmetric with respect to the 
inversion x + -x; and ( b )  singular at the point x = 0, with the nature of this singularity 
being such that the probability of a particle penetration from the left side into the 
right one and vice versa equals 0. 

For the potentials satisfying these rather common conditions the energetic discrete 
spectrum is doubly degenate. A particle with a given energy may be either in the right 
or in the left region, i.e. there are two variants with two different wavefunctions 
corresponding to them. The above situation can be shown thus (Avakian et ai 1987): 
let us consider a one-dimensional system with the interaction potential U ( x )  = 
K x 2  + n8(x),  i.e. a harmonic oscillator with a delta-shaped addition. The spectroscopy 
of this system is such that there are levels with interchanging even and odd wavefunc- 
tions. The odd levels do not depend on the parameter fl and even ones do. With the 
growth of Cl every even level approaches the adjacent odd one, merges with it and 
produces a doubly degenerate energetic level. 

Instead of 2 one may take N identical wells separated by impermeable barriers 
and obtain n-fold degeneration in one dimension. There is a question whether the 
model of a singular-symmetrical potential is the only mechanism explaining a degener- 
ation in one dimension. 

A quantum system with the potential U ( x )  = -e’Ixl-’, i.e. a one-dimensional 
hydrogen atom, bears a direct relation to this question (Loudon 1959). In this case a 
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model of a singular-symmetric potential takes place, since the integral of the function 
\ X I - ’  in the range ( - e ,  E )  is divergent and therefore the regions x < 0 and x > 0 are 
isolated from each other (Andrews 1979). Together with this mechanism, a hidden 
symmetry O(2) (Davtyan et a1 1987b, Boya et al 1988) produces a double degeneration. 
Hence, there are two models explaining the same phenomenon. Evidently, these models 
d o  not contradict each other. The purpose of this paper is to attract one’s attention 
to the fact that the symmetry 0 (2 ) ,  in contrast to the singular-symmetrical potential 
model, is responsible not only for the double degeneration but also for the whole 
dynamics of a one-dimensional hydrogen atom, i.e. an explicit spectrum, an explicit 
mode of wavefunction and an extra constant motion. 

The paper is organised as follows. First we substantiate the fact that, in one 
dimension, the Coulomb potential is really singular in the above sense. We can obtain 
this by proving the problem of a one-dimensional hydrogen atom, which is identical 
to the problem of a particle motion in the field U = (cux+p/x)’ representing two 
identical wells, separated by an  impermeable barrier. Then we try to ascertain the 
form of an  extra constant of motion, responsible for the double degeneration. We 
have solved this problem first with the help of a transition to one dimension in the 
expression of a Runge-Lenz vector, then with the help of an artificial trick resembling 
the method of separating variables. 

From the point of view of a singular-symmetrical model for the double degeneration 
the concrete type of singularity is not important. It will satisfy us if the barrier between 
the regions is impermeable. Thus there should exist an extra constant of motion for 
the fields, different from the Coulomb, but singular. In this connection there arises 
the question whether it is possible to obtain an  explicit form of this invariant quantity 
by a certain method. We have proved that, for the potentials U = -lxI-’+ G(lxl), where 
G (  1x1) + constant as x + 0 and having no singularities, variables are separated in ‘the 
one-dimensional parabolic coordinates’ and the extra constant of motion coincides 
with the one for the pure Coulomb field. This result speaks in favour of the singular- 
symmetrical potential model, though it is not out of place here to pay attention to the 
moment we have spoken about previously. The information obtainable from the 
knowledge of the extra constant of motion is very poor, as all that can be done here 
is to explain the double degeneration. There are no hints at such facts as an explicit 
form of the energy spectrum and the corresponding wavefunctions. These questions 
are simply solved in the approach based on the hidden O(2) symmetry. The rest of 
this paper is devoted to this. To avoid repeating known facts (Davtyan et al 1987b) 
we develop below the approach based on some other ideas (Hylleraas 1932). We have 
obtained a differential equation of second order describing the behaviour of a one- 
dimensional hydrogen atom in the momentum space and developed on this basis the 
scheme of O(2) symmetry, predicting both the fact of the double degeneration and 
the explicit form of the energy spectrum, wavefunction and extra constant of motion. 

2. Coulomb potential as an oscillator analogy in one dimension 

We have mentioned above that the potential U(x) = -e’lxl-’ divides the axis x into 
two isolated semiaxes x > 0 and x < 0. This fact itself is non-self-evident (Andrews 
1979). Here we give its simple proof using the transformation 

x = (sgn u ) u ’ .  
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This transformation RI+ R ’  is trivial and degenerate (one-to-one) at the same time 
in the series of quadratic non-bijective transformations, converting the Coulomb 
problems in R’, R 3  and R’ into oscillator problems in R’, R‘ and R’, respectively 
(Lambert 1988, Davtyan et a1 1987a). 

Together with the substitution 

rll(.x) = ( lu l ) ‘  ’d(u) 

this transformation converts the Schrodinger equation ( e  = A = /I = 1 )  

d ” / d . u ’ + Z ( E + l / / x / ) ~ = O  

for the one-dimensional hydrogen atom into that for a singular oscillator: 

d’d/du’+2( E - V( U ) ) &  = 0. 

Here 

F =4+(61E/)”’ 

V ( u )  = [2(IEI)”’u +(3/8)”’l/u]’.  

This is well illustrated in figure 1. Thus, in terms of coordinates U we have two wells 
identical in form separated by impermeable barriers. This has proved the relation of 
a one-dimensional hydrogen atom to a singular-symmetrical potential. Thus the fact 
of the double degeneration of the spectrum of the one-dimensional hydrogen atom is 
demonstrated. 

Figure 1. 

3. Runge-Lenz vector analogue 

It is known from hydrogen atom theory that the Runge-Lenz operator (Englefield 
1972) is the constant of motion in the Coulomb field together with the angular 
momentum 

r 1  

r 2  
Â  = --+- {[i  x i] - [ i x i ] } .  (3.1) 

Does there exist a similar constant in one dimension? 
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In one dimension i = O  and instead of r in (3.1) one should insert the vector 
(x, 0,O). Then only the A, component will remain different from zero and we denote 
this by A. Thus these naive considerations lead us to the quantity 

A = -x / jx l= -sgn x. (3.2) 

Before we verify whether the component a from (3.2) commutes with the Hamiltonian 

(3.3) 

we note an important fa&. The point x = 0 does not enter the range of the operator 
(3.3). This is the so-called regularised Coulomb field which can be obtained from the 
potential 

1 
U ( x ,  a) = -- 

1x1 + ff 

as a + 0. Just in this regularised Coulomb field we have the double degeneration 
mentioned above. So, we consider further that x f 0. With this note taken into account 
we have 

[ 9, A] = S’(x) = 0 (3.4) 

i.e. the operator (3.2) is really a constant of motion. We shall write down the eigenvalue 
and eigenfunction problem of the operator (3.2) 

2’(cl= A$. (3.5) 

First, from (3.5) it is clear that A = i l ,  as A’= 1. Further, the eigenfunction G R =  
O ( x ) f ( x )  corresponds to the eigenvalue A = +1, and the eigenfunction $L = 0(-x)g(x) 
to the eigenvalue A = -1 where 

X < O  [: x>o.  
O(x) = 

As follows from the continuity of the wavefunctions at the point x = 0, f ( + O )  = 0, 
g(-0) = 0. The functions (LR and CLL are Hamiltonian eigenfunctions (3.3) at x # 0 and 
thus f ( x )  = g(-x). From cniieness of motion it follows that f(co) = g(-co) = 0. A 
complete set of operators (2, A )  corresponds to the basis ( G R ,  (LL). A qualitative graph 
of the functions (LR and $L is given in figure 2 (the number of zeros undoubtedly 
depends on the level number). There is another alternative set (9, @), where 8 is an 
inversion operator. The basis ($(+’, 4‘-’): 

Figure 2. 
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corresponds to this set. The operators a and 4 anticommute and the commutator 
[@, a] = -2A does not lead to a new constant of motion. 

4. Speculation on the separation of variables 

Can we obtain the operator form (3.2) without turning to three dimensions? We note 
that in quantum mechanics the Schrodinger equation for a hydrogen atom yields 
separation of variables in parabolic coordinates. Taking into account this fact we may 
derive an explicit form of the 2-projection of the operator A* (Landau and Lifshitz 
1974). Projections A, and A, can be obtained in the same way if parabolic coordinates 
are ‘oriented’ along the axes x and y respectively. 

In this section we present some speculative considerations that replace the variable 
separation method in one dimension. First we note that, to define a particle position 
in one dimension, it is enough to set the coordinate modulus x and its sign. This 
method is identical to the definition of the point in two dimensions with the help of 
polar coordinates. The coordinates 1x1 and the sign of x are independent. Does there 
exist a one-dimensional analogue of parabolic coordinates in such a case? In two 
dimensions parabolic coordinates, ‘oriented’ along the axis x,  look as follows: 

p = f [ ( x 2 +  y y  + X I  v = +[ ( x 2 + y 2 ) ’ / 2  - X I .  

Hence in the limit y + O  we have 

p = e ( x ) l x l  v = e( - x ) l x l .  

From (4.1) it follows that 
(4.1) 

p +  v = 1x1 p - v = x .  (4.2) 
In contrast to the coordinates 1x1 and sgn x we cannot consider the coordinates (4.1) 
to be independent. If p # 0 then v = 0 and vice versa, if v # 0, then p = 0 (see figure 
3). Further, the product p v  = 0. At x f 0 the identity 

is true. From (4.2) it follows that 

V 
e ( - x )  =-. 

PU+V P + V  

P e ( x )  = - 

Hence the formulae (4.3) can be represented in terms of the coordinates p and v :  

d2tj  p a2$ v a2+ 
2+- - 

d x 2 - p + v  ~3p p + v  av2 

V I  

(4.4) 

Figure 3. 



2744 V Lutsenko et a1 

From (4.4) it follows that the Schrodinger equation is 

1 p a’$ 1 v a’$ 1 
2 p + + a p 2  2 p + v a v Z  p + v  

CL = E& - - - - - - - - - - (4.5) 

Let us represent the function $ as a product (cII(p)$2( v )  and proceed in the spirit of 
the variable separation method. Then, instead of (4.5) we obtain two ordinary differen- 
tial equations 

p+Y i- 2E/-41+ CL!= A41 

v$: + 2 E ~ $ z  + (L2 = - AQ2 

where the parameter A is a separation constant. Eliminating the energy E from these 
equations we obtain 

A* = A* 

where the operator A has the form 

(4.6) 

Remembering now that 

and  

( p  - v ) ( p  + V I - ’  = sgn x 

we obtain formula (3.2). 
Thus, if we d o  not pay any attention to the non-correctness of mathematical 

operations separating formulas (4.5) and (4.6), we may consider that, in one  dimension, 
there exists a method for replacing variable separation in the parabolic coordinates. 
This method leads to the same result (3.2) as in 0 3.  

5. Variable separation and a singular symmetrical model 

It follows from (3.4) that operator (3.2) commutes 9 for any potential U ( x )  and not 
only in the case of the Coulomb field. How can one understand this? First [ 2, A] = 0, 
not at any, but only in a potential singular at the origin of coordinates. Otherwise the 
regions x > 0 and x < 0 are connected and  the point x = 0 should not be neglected. 
The singular function S’(x) appears here and the commutation is violated. Second, 
[&, 23 = 0 for any singular potential, for in this case the point x = 0 is eliminated from 
consideration. Thus, the operator (3.2) is a constant of motion for any singular 
potential. How can this be explained in view of the framework of the method 
expounded in the previous section? 

Let us consider the potential 
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Here G ( l x 1 )  is a non-singular function at x = 0 ,  for example G = 1x1 or  G = x 2 .  In  
terms of the introduced coordinates ,U and v for the Schrodinger equation we have 

From the equality pv = 0 it follows that 

( p  + u)G(p+  v )  = @ ( P I +  u G ( u ) .  ( 5 . 3 )  

This property can easily be proved by expanding the function G ( p  + Y )  in a series 
and taking into account that 

( p  + v)" = p n  + v". 
It follows from ( 5 . 3 )  that variables in ( 5 . 2 )  are separated. It is easy to show that for 
all these, instead of formula (4.6), we obtain the result: 

As pu = 0, we again arrive at  the constant of motion ( 3 . 2 ) .  Thus the variable-separation 
method does not contradict the fact that operator ( 3 . 2 )  is a constant of motion for a 
singular potential. 

6. Hylleraas method 

We now consider the problem ot' a hidden symmetry in a one-dimensional hydrogen 
atom in more detail. In three dimensions, the hidden symmetry of a hydrogen atom 
is revealed in the momentum representation (Fock 1935). In this case we have to deal 
with an  integral equation, for in the momentum representation, not a differential but 
an  integral operator corresponds to the modulus of a radius vector r. The same is true 
for the quantity 1x1 (Davtayn et a1 1987b). Is there a possibility to describe a hydrogen 
atom in the momentum representation with the help of a differential equation rather 
than an integral one? It is clear that for this one should carry out some manipulations 
in the initial Schrodinger equation, looking to obtain an equation which would contain 
terms r, r 2 , p r  only, i.e. the terms to which a well known ansatz can be applied: 

p*=- ihV+p  i = i h V , + r  (6.1) 
which converts the physics from the coordinate representation into the momentum 
one. The necessary trick in three dimensions had been invented before a hidden 
symmetry of the hydrogen atom was discovered (Hylleraas 1932). As applied to one 
dimension, this trick is as follows. 

Let us multiply the Schrodinger equation 

by 21x1 and bring ~ ( x )  to the form: 

Ixl( p z  - 2 E ) 4  = 2 4 .  

We act on equation (6.2) from the left by the operator 

o=  (3  - 2 E ) l x l (  $*- 2 E )  
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and transform $(x) to the form 

X ( x )  = (+2E)+(X). 

Then, instead of (6.2), we obtain an equation: 

($’-2E)lxl( p^’-2E)lxlX(x) = ~ X ( X ) .  

Further, one is easily convinced of the following: 

Ixlp*’-p^’lxl=2isgnx-26(~). 

Hence 

lxl(p^*-2E)lx( = (g2-2E)x2-2  i$x. (6.4) 

With (6.4) taken into account we obtain the following equation instead of (6.3): 

[( p ’̂ - 2E)‘x2+2i( j?2-2E)p^x]X(x) = 4X(x) .  

Now we may use the ansatz (6.1). I f  we pass from X ( x )  to its Fourier transform 4 ( p ) ,  
connected with the Fourier transform a ( p )  of the wavefunction +(x) by the relation 

4 ( P ) = ( P 2 - 2 E ) a ( P )  (6.5) 

( p2 - 2 E ) 2 d 2 ~ / d p * +  2( p2 - 2E)p d 4 / d p  + 4 4  = 0. (6.6) 

We have obtained an equation of the second order. Hence we see that, in comparison 
with the initial equation (6.2)-of second order-we have neither lost anything nor 
obtained any new information. 

An approach is known from the literature where, instead of (6.6), two differential 
equations of first order (Nunez Yepez et a1 1987) are obtained. In spite of its simplicity 
and elegance, this approach is no consistent as it is based on the ansatz 

then we arrive at the differential equation 

i d /dp x > o  
I x ‘  { -i d /dp x < 0. (6.7) 

It is evident that the rule (6.7) is true only in one case. Consider the functions R(x)  
and L(x), such that R(x)  = 0 at x < 0 and L(x) = 0 at x > 0. Then and only then is it 
easy to prove that 

( R I I ~ I I R )  = J s*(p) [ i  d / d p l ~ ( p )  dp 

( L I I ~ I I L ) =  I_, i*(p)[-i  d / d p ~ i ( p )  dp 

--a) 

cc 

and thus (6.7) is true. As s( p )  and i( p) we take the Fourier transform of the functions 
R(x)  and L(x). This transformation trick (6.7) cannot be applied to any other class 
of functions. Thus, in this approach it is supposed that the solutions should only be 
to the class R(x )  and L(x). It is not surprising then that the given approach leads to 
very strange conclusions about the absence of states with a given parity in the one- 
dimensional hydrogen atom and about the superselection rules (Nunez Yepez er a1 
1988). 
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7. The hidden symmetry 

Equation (6.6), on the face of it, seems to be more complicated than the Schrodinger 
one (6.2). But it is not so. There is a nice substitution that simplifies equation (6.6) 
very much. We speak about the substitution (Dartyan et a1 1987b) 

P =Po tan ((PI21 -7rscps.n po= ( -2E)”Z  (7.1) 
which establishes a one-to-one correspondence between the straight line (-a < p < 00) 

and the circle with a radius po. This substitution is a one-dimensional analogue of a 
stereographic projection (see figure 4)  used in the theory of a hydrogen atom (Bander 
and Itzykson 1966). Introduce a notation 4 ( p )  = G(cp). It follows from ( 7 . 1 )  that 

d p 2 + p i  d - 
dcp 2Po d P ’  

Using (7.2) we write equation (6.6) in terms of the variable cp 

d2G 1 
y + ~  G = 0. 
dcp Po 

(7.2) 

(7.3) 

We see that the motion of a particle in a one-dimensional Coulomb field is identical 
to a uniform motion of the particle along a circle with radius po. Equation (7.3) has 
two independent solutions ( n  = 1 , 2 , .  . .): 

GLR’ = C exp( -incp) GLL’ = C exp(incp) (7.4) 
describing a clockwise and counterclockwise rotation, respectively. The energy spec- 
trum is described by the well known Bohr formula: 

E,, = -1/2n2, n = 1 , 2 , .  . . . (7 .5 )  
Another equivalent basis is given by the functions 

GF) = C cos ncp GI;’ = C sin ncp. (7.6) 
In every state (7.6) the parity, as well as the energy, has a definite value. In fact, the 
inversion x + -x is identical to the inversion p + -p and the last, according to (7.1), 
is identical to the inversion cp + -cp. 

States (7.4) are eigenfunctions of the generator of the group 0 ( 2 ) ,  i.e. (to the 
accuracy to a constant) of the operator 

(7.7) 

I 

I 
Figure 4. 
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with the eigenvalues (-1) and ( + l )  corresponding to the functions G',"' and Gf', 
respectively. In  the problem of uniform motion along a circle, operator ( 7 . 7 )  plays a 
fundamental role, as i t  explains the double degeneration of a spectrum. In other words, 
it is a constant of motion responsible for the hidden symmetry O ( 2 ) .  I t  is important 
that operator ( 7 . 7 )  undoubtedly defines an explicit form of functions ( 7 . 4 ) .  It is clear 
that operator ( 7 . 7 )  is connected with the Runge-Lenz operator. 

Let us clear up  the nature of this connection. 
Begin with the equations 

fGLR' = -GkR' fGLL1 = GLL'. ( 7 . 8 )  

We shall transform the variable p to the variable p .  For this purpose we introduce 
the functions akR'(p) and akL'(p) according to the formulae 

G F ' =  (p '+p i ) akR ' (p )  G f ' =  (pz+pi )akL ' (p) .  

Then equations ( 7 . 8 )  can be represented as follows: 

AukR' = -a ,  I RI 

a = ( p * + p ; ) - ' i ( p ' + p : ) .  

R a l , L l  = a t L )  n 

where the new operator a is defined in the following way: 

It follows from ( 7 . 1 )  that 

Therefore 

( 7 . 9 )  

This operator is an analogue of the Runge-Lenz constant of motion. 

representation. From the technical point of view the formula 
Let us convert the simple results given above into less suitable terms of a coordinate 

exp(incp) = (-1)" - ( ; 5 i;:) 
is important here. I t  follows from this formula that 

Fourier transforms of these functions are calculated with the method of residues. The 
result is 

(L',~'= constant x e ( - x ) f ( x )  = constant x e ( x ) f ( x )  (7 .10)  
where the function f( x) is expressed through the associated Laguerre polynomials 
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The results of Loudon (1959) can be obtained from this at once, if we choose instead 
of (7.10) the basis (7.6) with a definite parity. 

Let us turn to operator (7.9). According to the analysis (6.1) 

x d2 
2 dx2 

A = -  -++E. (7.11) 

We shall start with equation (7.2) which can be written down in the following way: 

h^l j  = 2 l j  

where the operator ĥ  is of the form 

h  ̂= -Ixl(d2/dx2+ 2E) .  

We see that the operator A is expressed through the operator h*: 
A = -t sgn xi .  

[A, h*] = -+(sgn x i  - h* sgn x)h^ = o 

(7.2) 

The operators a and h^ commute: 

and thus they have common eigenfunctions (7.10). For these functions h = 2 and thus 
(7.2) is transformed into (3.2). 

5. Conclusion 

Thus, what is more important: the hiden symmetry or the singularity? We have shown 
that the lauguage of the hiden symmetry possesses an obvious advantage. The hidden 
symmetry explains not only the fact of the double degeneration, but also the form of 
spectrum (7.5), the mode of wavefunctions (7.4) and (7.10), a symmetric ‘origin’ of a 
constant of motion (7.11) and the condition under which (7.11) transforms into (3.2). 
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